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STABILIZATION OF WEAKLY LINEAR SYSTEMS* 

V.A. KOLOSOV 

The problem of stabilizing bilinear systems, characterized by the 
presence of a small parameter in the bilinear part of the system, is 
considered. The result is an approximate method for synthesizing a 
stabilizing control /l-3/ in bilinear systems, in the case of a 
performance index, Estimates are derived for the error with respect to 
the performance index. 

1. Statement of the problem. Suppose we are given a bilinear control system 

j=EN(t)~u+B(t)u;sEIi,; s(O)=z,;t>O (1.Q 

Here N (t) is a measurable and bounded nxn matrix for t>o; B (0 E Rn is a vector- 
valued function, also measurable and bounded for t>O. The problem is to determine a scalar 
control in the class U of bounaea controls u = u @,I), E> 0 is a small parameter. 

We wish to synthesize an optimal control in class U, which stabilizes system (1.1). The 
performance index is 

I (rt) = S{s'Q(t)z + h(t)-‘uydt P-3 

Here Q (t) is a continuous, hounded, uniformly Positive definite n x n matrix, and h ff) 
is a positive definite scalar function; the prime denotes transposition. Integration with 
respect to t is always from 0 to 00, 

2. Successive approz~tions aZgotithmnt. Let us assume that for the values of e under 
consideration problem (1.11, 11.2) has a solution. Bellman's equation is 

inf ltW/dt + U (B (t) + t.V t)z)‘W/tkc -+ .dQ (t)r + X (t)-1U21 = 0, (2-l) 
u&J 

(V = v (2, 8)) 

It follows from (2.1) that the following expression defines an optimal control: 

u*(t,x) -= - + h (t) (B (t) + EN (t) x)’ dV/Sx (2.2). 

Expand the function Ii in powers of E: 

v=.v,(t,,t)+ev~(t,z)+... 

~FrikZ.Matem.~ekhan.. 53,6,890-894,1989 

(2.3). 
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To determine VI (t,x) we must substitute (2.2) into (2.1), and then substitute (2.3) 
into the result and equate the coefficients of like powers of e to zero. This gives the 
following linear equations for V: (t,X): 

k=O 

k=Ll 

B, = B (t)h (t)B’ (t), B, = B (t)h(t)x’N’ (t) + N (t)xI. (t) B’ (t), 

B, = N (t)xh (t)x’N’ (t) 

When i=l the last sum vanishes. Eqs.(2.4) are solved in the class of continuously 
differentiable bounded functions. The Bellman function of the zeroth approximation is VO (t? 
5) = x’P(t)x, where P(t) is a continuous, bounded, positive definite nXn matrix. Under 
certain conditions P(t) is the unique positive definite solution of the Riccati equation 

14, S/ 

Thus, 
control is 

When 

P’ (t) - P’ (r)B, (t)P (t) = -Q (t) (2.5) 

provided that Bellman's equation is solvable when e = 0, the zeroth-approximation 
given by 

uO (t, x) = --h (t) B’ (t) P (t) x (2.6) 

i>l the solution of Eq.(2.4) is given by 

Vi (t, x) = _ j + [z avk’ (‘,z”’ @)) B1 (%) aVi_k k * CT)) + 
(2.7) 

k=l 

i-1 Bilk’ (&Z(T)) 

z AI Bz(r, r(r)) 
",-k-r (T,Z(T)) + 

az 
k-0 

i-2 c cwk’ (T, z (T)) 

ar 
B,(~,x(t))aV,-k-~~~s(T)) ]dT 

k-o 

v, (t, x) = X’P (t)x. 

Here z :Z) is the solution of system (1.1) for e=o,z>t, where the control is 
40 (r, r (r)) = --h (r)B' (r)P (2)~ 0) and the initial condition r(t) = 5. 

3. Estimation of the eeroth approximation. Let problem (l.l), (1.2) have a solution for 
some given e and for e = 0. We wish to estimate the difference J(u~,)- J(u*). If this dif- 
ference is of the order of e, formula (2.6) yields a zeroth approximation to the optimal con- 
trol u* (t, 5) in problem (l.l), (1.2). Assume that the following inequality holds (the 
letter C will denote various positive constants): 

x’Q (t) x - ex’P’ (t) B’ (t) h (t) x’N’ (t) P (t) x > C )I I2 (3.1) 

Then there exists a zeroth-approximation performance index Jo (u), which differs from 

J (u) by a quantity of the order of e: 

F (t, I, U) = x’Q (t) x + h (t)%2 - EUX’N’ (t) aV,,lax > C 1 x j2 (3.2) 

I,(u) = 1 F(t,x,u) dt (3.3) 

Since by condition (3.2) the integrand F (t,x,u) is positive definite as a function of 
x, the control u,(t,x) is optimal for (1.1) in the sense of (3.3). Hence V,(t,x) is the 
Bellman function. Consequently, 

1 F (tv z (t, 4, u,, (t, x (t, ~0))) dt = V, (0, x0) 

Here and below z(t, ucj is the trajectory of the system when the control u,(t, x) is 
applied. It follows from (3.2) that 

j F (t, x (ta uo).uo (t, J (t, u,,))) dt > C s I x (t, uo) Ia dt (3.5) 



Using (3.4) and (3.5), we obtain an estimate for solutions of (1.1) with u = uo(t, z) : 

s I 2 (t, u3 )a dt Q cv, (0% x0) (3.6). 

Therefore, we can state that J,(u)< 00 and the control 
(l.l), (1.2). 

We have 

z+,(t,zb is admissible for problem 

or 

V(G 5) & y, (G z) + IJ (&I - J, (%)I 

J (a*) Q JO (%I) -i- 6 

= .Fo(uJ 4 6 

(3.72 

Substituting (3.3) into (3.7) and estimating J(U) for the control uo (G x)9 we obtain 

6 < 28 s d (t, U@) P’ (t) B (t) h (t) 2’ (t, u*) N’ (t) P (t) I (t, uo) dt 

Consequently, we have the following upper bound for the error in the performance index: 

J @,) < Jo&o) + SC 

A lower bound is established in analogous fashion. The final result is 

0 <J (%) -J (u*)< CE (3.6) 

We assert that the control (2.6) makes system (1.1) asymptotically stable. the zeroth- 
approximation closed-loop system is asymptotically stable. Condition (3.6) makes it possible 
to use the first-approximation stability theorem of /6/. The result is that system (l-l), 
which is a closed-loop system relative to the zeroth-approximation control, is asymptotically 
stable. 

4. Estimation of higher approxinutizms. The i-th approximation control is determined by 
the formula 

ui (t, 5) = 240 (t, 2) - l/g” (t)(B (t) + EN (t)x)‘aw/ax 

Here uo(t,x) is the seroth-approximation control (2.6). 
Suppose there exist functions Vk (&x)&Q i) which are continuously differentiable with 

respect to both arguments and satisfy Eqs.(2.4). In addition, let us assume that 

I w I =G c Ix I*, I awlaz I .< c I 5 I 

Multiplying (2.4) by 8' and summing over i, we get 

i?w,f& - + (6%“/8x) (B, + EL& _t ~?i?,) 8wpx = - x’Q (t) x + h& +I 

Suppose that problem 

the performance index 

is positive definite with respect to the phase coordinate x. Consequently, 
mation control ui (t,s) is optimal for system (1.1) with performance index 
optimal stabilizing control theorem of /5/, 

(l.lhfl.2)has a solution for e = Oand some e > 0. 

x’Q (t)s - d+‘hi > C I x le 

Ji (U) = I (11) - E’+” S hi dt 

Then, if 

(4.1) 

the i-th approxi- 
(4.1) * By the 

inf J{(u)= W(O,z,) 
UEll 
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Consequently, 

s I z (L Ui) 12 dt s cw (0, zo) (4.2) 

Using the representation (4.1) and condition (4.2) and proceeding as in the case of the 
zeroth approximation, one can estimate the error in the performance index for higher approxi- 
mations: 

v (6 x) = J (u,) < J (Ui) < Ji (4) + I J (4 - Ji @I) 1 

Using (4.11, we have 

Thus, the upper and lower estimates are as follows: 

Consequently, the stabilizing control in the i-th approximation, ui Q, 5). implies an 
error of the order of ai+i in the.performance index. 

I J (111) - Ji (Ui) I < E’+‘C J I 5 Ja dt < e”lC,W (0, I~) -< e’+X’, 

J (uJ < Ji (~4 + e’+‘G, Ji (uJ < J (u*) + I JI (u*) - J (u,) I < 
J (IA*) + e’+TW (0, x0) 

5. EaXnapte. We consider a model which describes a chain of fermentation conversions of a 
substrate. The substrate, percolating into a cell, is included in some kind of conversion 
chain, as a result of which there is an additional biomass exchange. Subject to certain 
assumptions, the whole growth process can be represented by the scheme illustrated in the 
figure /7/. Here 5, is the concentration of the substrate, SO is the initial concentration 
of the substrate (it is assumed that the substrate is supplied at constant concentration), u 
is the supply rate of substrate to the reactor, E is the concentration of free key enzyme, ts 
is the biopolymer concentration, 8 is the stoichiometric coefficient, z1 is the concentration 
of the enzyme-substrate complex, K, and K, are the constants of formation and breakdown 
rates of the enzyme-substrate complex, K, is the formation rate constant of the reaction 
product. In addition, it is known that E,% and z1 are related: LIZ) -I- <zl) = e, (a$, where the 
angular brackets denote molar concentration, and 8, is the fraction of key enzyme in the 
overall cell mass (el<i). 

0 

Fig.1 

It is assumedthat the rate of consumption of the substrate is fairly high and that only 
a small portion is broken down. The number e will characterize the breakdown rate. If we 
put el=e then, using known results /8/, we obtain the following sytem of equations for the 
dynamics of relative concentrations (the difference between the actual and admissible con- 
centration): 



zl* = (-K, - 8K, - eK,) Z, + (1 -I- e) K,z, + e&z, (5.1) 
.Q'= -K,z,+ eK,z,+ eK,w+ (eKe%*+ &I) p 

q' = 8K,z, - Kdq 

z1 (0) = 4, q (0) = --6o, 2, (0) = -38.06 

Here z, is the (actual) concentration of the enzyme-substrate complex minus the admiss- 
ible concentration q*. Similarly, 4 is the substrate concentration minus z,* and Z, 
is the biopolymer concentration minus zl*. The values of the admissible concentrations are: 
zl* = I, z,* =iOO, z,* = 38.06; 8 = 66.6 is the stoichiometric coefficient. The oxidation coefficient 
is K,= 10*. The other coefficients are: K, = O.i, K,= 0.2, K,= 0.35, e = 10". The performance 
index characterizes the degree to which the concentrations depart from their admissible values: 

J(u) = s w + 12 + za* + 19) dt (5.2). 

The zeroth- and first-approximation controls are given by the following expressions: 

II,, (z) = -27582, -105,5y -u)%& 
y(z)- -O,OiZz,* - 27582, -4915~ -2095% 

The figure illustrates the dynamics of the relative concentrations of the components in 
system (5.1) when the controls %(z) (curve 0) and q(r)(curve I) are applied. The solid 
curve represents the relative biopolymer concentration, the dashed line represents the 
relative substrate concentration, and the dash-dot line represents the relative concentration 
of the enzyme-substrate complex. 
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